Bisphosphonate prodrugs: unusual dimerisation of clodronic acid trimethyl ester to a cyclic bis(bisphosphonate)

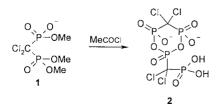
Marko J. Ahlmark,*^a Markku Ahlgrén,^b Riku Niemi,^c Hannu Taipale,^c Tomi Järvinen^c and Jouko J. Vepsäläinen^a

^a Department of Chemistry, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland. E-mail: Marko.Ahlmark@uku.fi

^b Department of Chemistry, University of Joensuu, PO Box 111, FIN-80101 Joensuu, Finland

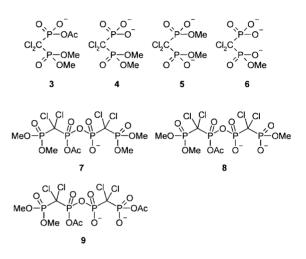
^c Department Pharmaceutical Chemistry, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland

Received (in Liverpool, UK) 19th January 2000, Accepted 15th March 2000

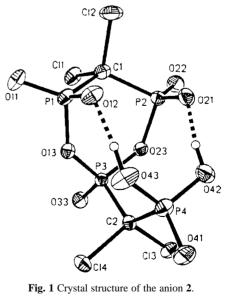

 $Cl_2C[P(O)(OMe)_2P(O)(OMe)(O^-Z^+)]$ selectively reacts with acetyl chloride to provide a new enzymatically stable heterocyclic bis(bisphosphonate); the structure is confirmed by X-ray crystallography.

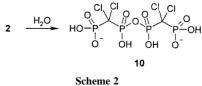
Methylenebisphosphonates (MBP), such as clodronate (Cl₂MBP), are an important class of drugs which have proven to be effective in the treatment of various diseases of bone and calcium metabolism including Paget's disease, non tumor-induced hypercalcaemia, and osteoporosis.¹ Recently, we reported² the synthesis and *in vitro* evaluation of clodronic acid dianhydrides as bioreversible prodrugs of clodronate. Exploration³ of new strategies to prepare clodronate anhydrides lead us to a discovery of the selective synthesis of a new cyclic bis(bisphosphonate) anion **2**. The prepared dimer is the first approach to the self-prodrug of clodronate in which the number of promoities are minimised. We report here the selective synthesis and the X-ray structure of a stable cyclic dimer of clodronate, and its stability in aqueous buffer and human plasma.

Triester **1** (0.206 mmol), prepared by known method,⁴ reacted selectively with acetyl chloride (2.196 mmol) in dry acetonitrile (4.0 ml) under reflux for 2 h to give a cyclic bis(bisphosphonate). The mixture was concentrated *in vacuo*, dissolved in CH₂Cl₂ and extracted once with cold water to give [NMeBu₃]₂**2**[†] as a colourless oil in 92% yield after evaporation of the aqueous phase (Scheme 1). The backbone structure was assigned by ³¹P NMR spectroscopy, where peaks with intensities of 1:2:1 appeared as two doublets at δ 1.78 (²J_{PP} 16.9 Hz) and -2.17 (²J_{PP} 42.6 Hz), and a triplet of doublets at δ -17.58 (ring phosphorus). This structure was confirmed by X-ray crystallography[‡] (Fig. 1).


This type of selective and quantitative cyclisation reaction is rather unusual.^{5–8} According to NMR studies, the reaction starts with the removal of the methyl group (first step) as MeCl from the anionic phosphorus **1** to form monoacetyl compound **3**. The formation of anionic bisphosphonates **4–9** was also detected during the reaction by 2D ³¹P NMR P,P-COSY. However, all these species led to selective formation of **2**.

X-Ray diffraction study of $[NMeBu_3]_2$ showed a strained six-membered ring as a consequence of the O13–P1–C1 and O23–P2–C1 angles of 98.8°, 6° smaller than for acyclic derivatives.⁹ The bond angle distortion of P1–O13–P3 is *ca*. 15° wider than in non-cyclic derivatives.⁹ The stability of the cyclic structure is likely due to the short hydrogen bonds between


Scheme 1 Preparation of 2.


DOI: 10.1039/b000558o

O12–O43 and O21–O42. Moreover, the two oxygens bonds, O11(O22) and O12(O21) at P1(P2), are short (1.466 and 1.490 Å) indicating a strong double bond character for both bonds. Other bond lengths are within normal ranges.

The usefulness of the cyclic structure as a prodrug was investigated in aqueous buffer and human plasma. Ring 2 was cleaved to an acyclic dimer 10 (Scheme 2) in 50 mM aqueous

phosphate buffer solution at 37 °C. The half-lives for chemical degradation of **2** were 60 min (pH 5.0) and 63 min (pH 7.4). Further hydrolysis of dimer **10** to clodronate was not observed during 9 h at pH 7.4. Compounds **2** and **10** are resistant to enzymatic hydrolysis, probably because the bridging carbon prevents¹⁰ stepwise hydrolysis, which is generally observed for terminal phosphates.

Notes and references

† Spectroscopic data for 1,1-dichloro-1-(5,5-dichloro-4,6-dihydroxy-2,4,6-trioxo- $2\lambda^5$, $4\lambda^5$ 6 λ^5 -[1,3,2,4,6]dioxatriphosphinan-2-yl)methylphos-

phonic acid bis(tributyl(methyl)ammonium) salt [NMeBu₃]₂**2**: δ_{H} (400.1 MHz, CD₃COCD₃): 3.48 (m, 12H, NCH₂), 3.24 (s, 6H, NCH₃), 1.83 (m, 12H, NCH₂CH₂), 1.44 (m, 12H, CH₂CH₃), 0.99 (t, 18H, J 7.2 Hz, CH₂CH₃); δ_{P} (162.0 MHz, CD₃COCD₃): 1.78 (d, $^{2}J_{PP}$ 16.9 Hz), -2.17 (d, $^{2}J_{PP}$ 42.6 Hz), -17.58 (td, $^{2}J_{PP}$ 16.9, $^{2}J_{PP}$ 42.6 Hz); δ_{C} (100.6 MHz, CD₃COCD₃): 62.16 (CH₂), 48.95 (CH₃) 24.84 (CH₂), 20.39 (CH₂) 14.00 (CH₃); ES-MS *m*/z 435.1 (M - 2MeN+Bu₃ - H₂O + 2H+). Anal. calc. for C₂₈H₆₂Cl₄N₂O₁₀P₄·0.25H₂O: C, 39.62; H, 7.41; N 3.24. Found: C, 39.84; H, 7.46; N 3.26%.

‡ Crystal data for C₂₈H₆₂Cl₄N₂O₁₀P₄·0.25H₂O, [NMeBu₃]₂**2**·0.25H₂O: colorless single crystals were obtained by slow air evaporation of ethyl acetate–acetone solution, M = 856.98, triclinic, space group $P\bar{1}$, a =

11.3054(4), b = 11.5193(4), c = 17.8036(7) Å, U = 2067.68(13) Å³, T = 120 K, Z = 2, $\lambda = 0.71073$ Å, μ (Mo-K α) = 0.492 mm⁻¹, 17 094 reflections measured, 8667 unique ($R_{\rm int} = 0.0326$). Final $R_1 = 0.0371$, $wR_2 = 0.0828$ (for 8667 data). CCDC 182/1575. See http://www.rsc.org/suppdata/cc/b0/b0005580/ for crystallographic data in .cif format.

- 1 H. Fleisch, Bisphosphonates in Bone Disease: From the Laboratory to the Patient, The Parthenon Publishing Group Inc., New York, 1995.
- 2 M. Ahlmark, J. Vepsäläinen, H. Taipale, R. Niemi and T. Järvinen, J. Med. Chem., 1999, 42, 1473.
- 3 M. Ahlmark and J. Vepsäläinen, Tetrahedron, submitted.
- 4 J. Vepsäläinen, J. Kivikoski, M. Ahlgrén, H. Nupponen and E. Pohjala, *Tetrahedron*, 1995, **51**, 6805.
- 5 D. A. Nicholson, W. A. Cilley and O. T. Quimby, J. Org. Chem., 1970, 35, 3149.
- 6 A. J. Collins, G. W. Fraser and P. G. Perkins, J. Chem. Soc., Dalton Trans., 1974, 960.
- 7 K. W. Pankiewicz, K. Lesiak and K. A. Watanabe, J. Am. Chem. Soc., 1997, **119**, 3691.
- 8 K. Lesiak, K. A. Watanabe, J. George and K. W. Pankiewicz, J. Org. Chem., 1998, 63, 1906.
- 9 J. Vepsäläinen, H. Nupponen, E. Pohjala and M. Ahlgrén, J. Chem. Soc., Perkin Trans. 2, 1992, 835.
- 10 L. A. Welford, N. J. Cusack and S. M. O. Hourani, *Eur. J. Pharmacol.*, 1986, **129**, 217.